Optimal Experimental Design Using a Consistent Bayesian Approach
نویسندگان
چکیده
منابع مشابه
A Bayesian Approach to Optimal Sequential Experimental Design using Approximate Dynamic Programming
Experimental data play an essential role in developing and refining models of physical systems. Not all experimental results are equally useful, and some experiments can be much more valuable than others. Well-chosen experiments can thus lead to substantial resource savings. Optimal experimental design seeks to quantify and maximize the value of experimental data. Common current practice for de...
متن کاملAdaptive Hamiltonian Estimation Using Bayesian Experimental Design
Using Bayesian experimental design techniques, we have shown that for a single twolevel quantum mechanical system under strong (projective) measurement, the dynamical parameters of a model Hamiltonian can be estimated with exponentially improved accuracy over offline estimation strategies. To achieve this, we derive an adaptive protocol which finds the optimal experiments based on previous obse...
متن کاملSimulation-based optimal Bayesian experimental design for nonlinear systems
The optimal selection of experimental conditions is essential to maximizing the value of data for inference and prediction, particularly in situations where experiments are time-consuming and expensive to conduct. We propose a general mathematical framework and an algorithmic approach for optimal experimental design with nonlinear simulation-based models; in particular, we focus on finding sets...
متن کاملNumerical Approaches for Sequential Bayesian Optimal Experimental Design
Experimental data play a crucial role in developing and refining models of physical systems. Some experiments can be more valuable than others, however. Well-chosen experiments can save substantial resources, and hence optimal experimental design (OED) seeks to quantify and maximize the value of experimental data. Common current practice for designing a sequence of experiments uses suboptimal a...
متن کاملSequential Bayesian optimal experimental design via approximate dynamic programming
The design of multiple experiments is commonly undertaken via suboptimal strategies, such as batch (open-loop) design that omits feedback or greedy (myopic) design that does not account for future effects. This paper introduces new strategies for the optimal design of sequential experiments. First, we rigorously formulate the general sequential optimal experimental design (sOED) problem as a dy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ASCE-ASME J Risk and Uncert in Engrg Sys Part B Mech Engrg
سال: 2017
ISSN: 2332-9017,2332-9025
DOI: 10.1115/1.4037457